Pluralism and Computational Individuation

André Curtis-Trudel

Department of Philosophy
The Ohio State University

October 28, 2019
Outline

1. Introduction: Individuation
2. Modeling
3. Computational Pluralism
What is computational individuation? A few different questions:

- What distinguishes physical systems that compute from those that don’t?
What is computational individuation? A few different questions:

- What distinguishes physical systems that compute from those that don’t?
- Among computing systems, what distinguishes those that perform the same task from those that don’t?
What is computational individuation? A few different questions:

- What distinguishes physical systems that compute from those that don’t?
- Among computing systems, what distinguishes those that perform the same task from those that don’t?
- Among those that perform the same task, what distinguishes those that perform the same task, in the same way, from those that don’t?
Example: tri-stable circuit

Q: why is this an issue?
Example: tri-stable circuit

- Q: why is this an issue?
- A: even simple logic gates are ‘computationally indeterminate’.

Tri-stable circuit adapted from Shagrir (2018).
Example: tri-stable circuit

Q: why is this an issue?
A: even simple logic gates are ‘computationally indeterminate’.

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Tri-stable circuit adapted from Shagrir (2018).
Grouping 1: OR

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Grouping H and M together.

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Grouping 2: AND

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Grouping M and L together.

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The semantic view

- Computational entities, tasks, and ways of performing them are always individuated at least partly in terms of their semantic properties.\(^1\)

\(^1\)Shagrir 2001, 2018; Sprevak 2010.
The semantic view

- Computational entities, tasks, and ways of performing them are always individuated at least partly in terms of their semantic properties.\(^1\)
- Neutral with respect to kind of content, how content is determined.

\(^1\)Shagrir 2001, 2018; Sprevak 2010.
The semantic view

Computational entities, tasks, and ways of performing them are always individuated at least partly in terms of their semantic properties.¹

Neutral with respect to kind of content, how content is determined.

States with same/similar contents are grouped together:

¹Shagrir 2001, 2018; Sprevak 2010.
The semantic view

- Computational entities, tasks, and ways of performing them are always individuated at least partly in terms of their semantic properties.\(^1\)
- Neutral with respect to kind of content, how content is determined.
- States with same/similar contents are grouped together:
 - If H, M have same/similar content, favour OR grouping.

\(^1\)Shagrir 2001, 2018; Sprevak 2010.
The semantic view

- Computational entities, tasks, and ways of performing them are always individuated at least partly in terms of their semantic properties.\(^1\)

- Neutral with respect to kind of content, how content is determined.

- States with same/similar contents are grouped together:
 - If H, M have same/similar content, favour OR grouping.
 - if M, L have same/similar content, favour AND grouping.

\(^1\)Shagrir 2001, 2018; Sprevak 2010.
The causal-mechanical view

Here the idea is that it is enough to look at the causal-mechanical structure of a system to determine computational status.²

The causal-mechanical view

- Here the idea is that it is enough to look at the causal-mechanical structure of a system to determine computational status.\(^2\)
- Not obliged to consider content to determine computational structure in this case.

Individuation Scheme of Dewhurst (2016)

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Input 1</td>
<td>Input 2</td>
<td>Output</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Individuation scheme of Coelho Mollo (2017).
Why choose?

- On the face of it, the semantic and mechanistic views are answering different questions:
Why choose?

- On the face of it, the semantic and mechanistic views are answering different questions:
 - Semantic: what representational tasks are performed by a system, and how?
Why choose?

On the face of it, the semantic and mechanistic views are answering different questions:

Semantic: what representational tasks are performed by a system, and how?
Causal-mechanical: what non-semantically characterized tasks are performed by the system perform, and how?
Why choose?

- On the face of it, the semantic and mechanistic views are answering different questions:
 - Semantic: what representational tasks are performed by a system, and how?
 - Causal-mechanical: what non-semantically characterized tasks are performed by the system perform, and how?
- Given this, why do we have to choose just a single individuation scheme?
Outline

1. Introduction: Individuation
2. Modeling
3. Computational Pluralism
Modeling

Figure: from Godfrey-Smith 2007.
Some common features of models:3

3Godfrey-Smith 2007; Jones and Cartwright 2005; Weisberg 2007.
Modeling

- Some common features of models:\(^3\)
 - Indirect representation.

\(^3\)Godfrey-Smith 2007; Jones and Cartwright 2005; Weisberg 2007.
Some common features of models:\(^3\)

- Indirect representation.
- Idealization: intentional misrepresentation. Ideal speaker-listeners; frictionless planes.

\(^3\)Godfrey-Smith 2007; Jones and Cartwright 2005; Weisberg 2007.
Some common features of models:\(^3\)

- Indirect representation.
- Idealization: intentional misrepresentation. Ideal speaker-listeners; frictionless planes.

\(^3\)Godfrey-Smith 2007; Jones and Cartwright 2005; Weisberg 2007
Computational models

- The present suggestion is that computational models are scientific models like any other.
Computational models

- The present suggestion is that computational models are scientific models like any other.
- What are computational models? I prefer an ecumenical approach...
Computational models

- The present suggestion is that computational models are scientific models like any other.
- What are computational models? I prefer an ecumenical approach...
 - Mathematical models: Turing machines, DFAs, neural networks etc.
Computational models

- The present suggestion is that computational models are scientific models like any other.
- What are computational models? I prefer an ecumenical approach...
 - Mathematical models: Turing machines, DFAs, neural networks etc.
 - Microarchitecture specifications: MIPS, RISC, etc.
Computational models

- The present suggestion is that computational models are scientific models like any other.
- What are computational models? I prefer an ecumenical approach...
 - Mathematical models: Turing machines, DFAs, neural networks etc.
 - Microarchitecture specifications: MIPS, RISC, etc.
 - The above supplemented with particular causal-mechanical, semantic, or teleofunctional properties as needed.
Figure: from Harris and Harris 2013, p. 397.
Computational modeling

- Indirect representation: results about e.g. TMs, microarchitectures deliver information about actual physical systems.
Computational modeling

- Indirect representation: results about e.g. TMs, microarchitectures deliver information about actual physical systems.
- Idealization:
Computational modeling

- Indirect representation: results about e.g. TMs, microarchitectures deliver information about actual physical systems.
- Idealization:
 - Turing machines idealize away from memory limitations.
Computational modeling

- Indirect representation: results about e.g. TMs, microarchitectures deliver information about actual physical systems.
- Idealization:
 - Turing machines idealize away from memory limitations.
 - Neural networks with step activation functions.
Computational modeling

- Indirect representation: results about e.g. TMs, microarchitectures deliver information about actual physical systems.
- Idealization:
 - Turing machines idealize away from memory limitations.
 - Neural networks with step activation functions.
- Abstraction:
Computational modeling

- Indirect representation: results about e.g. TMs, microarchitectures deliver information about actual physical systems.
- Idealization:
 - Turing machines idealize away from memory limitations.
 - Neural networks with step activation functions.
- Abstraction:
 - Microarchitecture specification.
In general, different models of a system may serve different explanatory ends without competition.
From modeling to pluralism

- In general, different models of a system may serve different explanatory ends without competition.
- Models are judged to be successful (unsuccessful) to the extent that they are well (ill) suited to certain investigator interests, explanatory aims, etc.
From modeling to pluralism

- In general, different models of a system may serve different explanatory ends without competition.
- Models are judged to be successful (unsuccessful) to the extent that they are well (ill) suited to certain investigator interests, explanatory aims, etc.
- This suggests that there is no single, privileged model of a given system; instead, we should pluralists about modeling.
Outline

1. Introduction: Individuation
2. Modeling
3. Computational Pluralism
Pluralism

Pluralism about some subject matter is the view that there are multiple different but equally useful, reasonable, legitimate, accurate, or even true accounts of that subject matter.
Pluralism

- **Pluralism** about some subject matter is the view that there are multiple different but equally useful, reasonable, legitimate, accurate, or even true accounts of that subject matter.
 - Legal pluralists think that there are multiple different but equally legitimate legal systems.
Pluralism about some subject matter is the view that there are multiple different but equally useful, reasonable, legitimate, accurate, or even true accounts of that subject matter.

- Legal pluralists think that there are multiple different but equally legitimate legal systems.
- Etiquette pluralists think that there are multiple different equally legitimate norms of etiquette.
Pluralism

Pluralism about some subject matter is the view that there are multiple different but equally useful, reasonable, legitimate, accurate, or even true accounts of that subject matter.

- Legal pluralists think that there are multiple different but equally legitimate legal systems.
- Etiquette pluralists think that there are multiple different equally legitimate norms of etiquette.
- And so on...
One road to pluralism

One route to pluralism, although not the only route, goes by way of relativism.

\footnote{See Shapiro (2014).}
One road to pluralism

- One route to pluralism, although not the only route, goes by way of relativism.
- Relativism about some subject matter X is the view that something is an X only relative to some Y.

4See Shapiro (2014).
One road to pluralism

- One route to pluralism, although not the only route, goes by way of **relativism**.
- Relativism about some subject matter X is the view that something is an X only relative to some Y.
- Pluralism about X arises when Y may take on multiple different but equally legitimate values.\(^4\)

\(^4\)See Shapiro (2014).
Modeling pluralism

- Relativism about modeling is the view that something is a good model of a system only relative to some explanatory aim.
Modeling pluralism

- Relativism about modeling is the view is that something is a good model of a system only relative to some explanatory aim.
- To the extent that different models may fulfill different explanatory aims, we get a kind of pluralism about scientific modeling.
Computational Pluralism

Modeling pluralism

- Relativism about modeling is the view that something is a good model of a system only relative to some explanatory aim.
- To the extent that different models may fulfill different explanatory aims, we get a kind of pluralism about scientific modeling.
- No need to view different models as ‘competitors’.
Computational pluralism is the view that there are multiple different but equally legitimate computational models.

- Computational pluralism
Computational pluralism

- **Computational pluralism** is the view that there are multiple different but equally legitimate computational models.

- The semantic and mechanistic individuation schemes (and perhaps others) home in on equally legitimate models, relative to different explanatory aims.
Computational pluralism

- **Computational pluralism** is the view that there are multiple different but equally legitimate computational models.
- The semantic and mechanistic individuation schemes (and perhaps others) home in on equally legitimate models, relative to different explanatory aims.
- In keeping with the modeling perspective, we needn’t view them as competitors. Instead, they are each better or worse suited to certain explanatory tasks.
Individuation schemes concern resemblance

Figure: from Godfrey-Smith 2007.
A case of non-semantic computation

- Sometimes computer scientists wish to explain the behavior of a system described non-semantically.
A case of non-semantic computation

- Sometimes computer scientists wish to explain the behavior of a system described non-semantically.
- For example: performance of a given pipelining scheme (or some datapath modification in general) measured in instructions per second.
A case of non-semantic computation

- Sometimes computer scientists wish to explain the behavior of a system described non-semantically.
- For example: performance of a given pipelining scheme (or some datapath modification in general) measured in instructions per second.
- Here instructions are best individuated not in semantic terms – whether it’s an add or a multiply or whatever – but in terms of cycles to execute.
A case of non-semantic computation

- Sometimes computer scientists wish to explain the behavior of a system described non-semantically.
- For example: performance of a given pipelining scheme (or some datapath modification in general) measured in instructions per second.
- Here instructions are best individuated not in semantic terms – whether it’s an add or a multiply or whatever – but in terms of cycles to execute.
- Upshot: in these sorts of cases, a non-semantic model of computation is appropriate.
A case of semantic computation

Other times, computer scientists wish to explain ‘semantically laden’ tasks.
A case of semantic computation

- Other times, computer scientists wish to explain ‘semantically laden’ tasks.
- For example: why two systems compute the same arithmetic function.
A case of semantic computation

- Other times, computer scientists wish to explain ‘semantically laden’ tasks.
- For example: why two systems compute the same arithmetic function.
- Even if this also employs a non-semantic individuation scheme, e.g. of computational vehicles, a semantic scheme is required to answer the question about function computation.
Upshots

- The modeling perspective fits computation into the broader context of scientific modeling.
Upshots

- The modeling perspective fits computation into the broader context of scientific modeling.
- To the extent that modeling pluralism is correct, even mundane, computational pluralism follows as a special case.
Upshots

- The modeling perspective fits computation into the broader context of scientific modeling.
- To the extent that modeling pluralism is correct, even mundane, computational pluralism follows as a special case.
- Questions about computational individuation turn out to be questions about which computational models are appropriate for different explanatory purposes – but there no special problems here for computation.

