

VECTORISING Begriffsschrift

On the relevance of recent forays into the deep learning of word meanings to some traditional philosophical problems and vice versa

LAUC, Davor +,*; SKELAC, Ines +,**

+ University of Zagreb, Faculty of Humanities and Social Sciences, Unit of Logic
* TerraLogix.ai Group Itd, Chief Data Scientist
** Algebra University College

HaPoC 2019

Agenda of the presentation

OUR THESES

- **01** Developments in NLP vindicates Frege's context principle
- **02** Radical translation thought experiments restated in MT indicates that indeterminacy of reference is improbable
- **03** Transfer learning in MT indicates that Quine's conjecture on holophrastic indeterminacy is too strong

GOOGLE BERT ARCHITECTURE

The recent foray in NLU using Transformers

Google BERT, Facebook's XLM, OpenAI GPT, RoBERTa,

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

FROM: Devlin at al (2018, May 2019 V2) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Frege's Context Principle

- **01** "never ... ask for the meaning of a word in isolation, but only in the context of a proposition"
- **02** sents = ['Rabbit is a mammal!', 'Rabbit is the same as Gavagai!']
- **03** [['[CLS]', 'Rabbit', 'is', 'a', 'mam', '##mal', '!', '[SEP]'], ['[CLS]', 'Rabbit', 'is', 'the', 'same', 'as', 'Ga', '##va', '##gai', '!', '[SEP]']] ('bert-base-multilingual-cased')
- **04** Vec('rabbit') in the 1. & 2. sentence cosine similarity 0.8167434

Frege's Context Principle 2

- **01** "never ... ask for the meaning of a (sub)word (a word piece) in isolation, but only in the context of a proposition"
- 02 sents = ['กระต่ายเป็นสัตว์เลี้ยงลูกด้วยนม', 'กระต่ายไม่เหมือนกับ Gavagai']
- 03 [['[CLS]', ['n', '##ູs', '##ູະ', '##ູທ', '##ູ່າ', '## ຢ', '##ເປັນ', '##ູສ', '##ູ້', '##ທ', ('bert-base-multilingual-cased')
- **04** Rabbit tokens (1-6) in the sentences 1-2 similarity 0.754323

THE FIRST THESIS

The improvements of NLU metrics when word meanings are represented by sentence-relative dense vectors indicate that Frege's context principle is correct.

INDERTERMINACY OF TRANSLATION

- indeterminacy of theories
- indeterminacy of reference
- holophrastic indeterminacy

I. of refrerence

Parts of the sentence may change in what they refer, but they will maintain the meaning of the sentence as a whole.

Holophrastic i.

A sentence may be correctly translated in multiple ways with different meanings.

Ind. of reference and MT

Radical Translation	Machine Translation
A target language is neither historically nor culturally linked to any known language	A target language is not closely linked to the language pair (i.e. another language family)
Translation of theoretical sentences is indeterminate	All sentences are theoretical; translation is based on MT methods
Input: behaviour, non-linguistic elements	Input: a large parallel text corpus

Deep learned Gavagai

- **01** Experiment measuring performance of the MT models trained on new (unseen) words
- 02 Experiment design: Dataset 1: IWSLT-14 English-German MT corpus, 160.239 sentence pairs, 33 "rabbit" sentences

Dataset 2: Ted Talk Thai-English sentences,

304.245, 40 "กระต่าย" sentences

Library: Facebook FairSeq

DS1: Transformer wmt16.en-de Model (Ott et al., 2018)

DS2: vanilla wmt16

Deep learned Gavagai 2

- **03** MT Model learned on IWSLT-14 dataset with ,,rabbit / bunny" and ,,Hase / Kaninchen" sentences removed
 - 100 epochs, loss 1.29
 - %0 of test ,,rabbit" sentences translate correctly
- 04 MT Model learned on TED-talks DS without "กระต่าย" and "rabbit/bunny" sentences
 - 100 epochs, loss 1.61
 - %0 of test "กระต่าย" sentences translate correctly

Deep learned Gavagai 3

06 Model is incrementally trained on "rabbit" sentences - 23 sentences, 50 epochs each

THE SECOND THESIS

Radical translation thought experiments simulated with MT indicates that indeterminacy of reference is improbable.

Holophrasic ind. and MT

Translation manual

Different possibilities of translating the same sentence (different meaning); impossible to determine the right one

Rules of translation

Context non-sensitive

Different possibilities of translating the same sentence (different meaning); but with a high probability of correctness of one translation Rules, probability, transfer knowledge, vector representation

Context-sensitive

Deep NN model

Holophrastic indeterminacy & transfer learning

Language Pair	Parent	Train Size	Bleu ↑	$PPL\downarrow$
Uzbek English	None	1.8m	10.7	22.4
020CK-Linglish	French-English	1.8m	15.0 (+4.3)	13.9
French'–English	None	1.8m	13.3	28.2
	French–English	1.8m	20.0 (+6.7)	10.9

FROM: Zoph at al (2016) Transfer Learning for Low-Resource Neural Machine Translation

THE THIRD THESIS

Transfer learning in MT indicates that Quine's conjecture on holophrastic indeterminacy is too strong.

Thank You

Discussion time