
The Two Sides of Design and Implementation

Bergamo, October 29th 2019
Henri Stephanou
Paris-I University

1

How do programs relate to reality?

Scientific
computing

Business
computing

Automation
software

• Has impact only on the mind of
the scientist

• Yields knowledge on the natural
and socio-economic world

• Has impact on the mind of
people acting in the world

• Has information on a subset of
human affairs

• Has causal impact on a mechanical
machine

• Yields very narrow information, on
its immediate environment only

2

Plan

The classical view: « Logical firewalls »

Case studies challenging the classical view

Michael Jackson’s view and its limits

Final proposal

3

Program artifacts

Specification Machine
Configuration

Design Implementation

Symbolic
Program

Program
As Artifacts

« Specification provides the function, a symbolic program is taken as the structural
description, and the physical process is generated by the implementation. […]

We shall call these ontological bundles program artifacts. » (Turner 2018, p. 52)

4

Logical firewalls

Materiality argument: non-relevance
of the material environment

Pleasantness problem: non-relevance
of the context of use

« When the correctness of a program, its compiler,
and the hardware of the computer have all been
established with mathematical certainty, it will be
possible to place great reliance on the results of the
program, and predict their properties with a
confidence limited only by the reliability of the
electronics » (Hoare 1969)

«In [simple cases], it might be argued that the abstract
machine is the target machine. But […] an abstract
machine no more qualifies as a machine than an
artificial flower qualifies as a flower. Compilers,
interpreters, processors and the like are properly
characterized as physical things, i.e., as systems in
space/time for which causal relations obtain. » (Fetzer,
1988)

“The role of a formal functional specification is
simply to act as a logical firewall between two
completely different concerns, known under the
names of "the pleasantness problem" and "the
correctness problem".
The pleasantness problem concerns the question
whether a system meeting such-and-such a formal
functional specification would satisfy our needs,
meet our expectations and fulfil our hopes. The
correctness problem concerns the question whether
a given design meets such-and-such a formal
functional specification.” (Dijkstra EWD 952)

5

Program
As Artifacts

The broader classical view

« Customer’s
Needs »

« Computational
Process »

Specification
Machine

Configuration

Design Implementation

Symbolic
Program

• Data, Constraints, Laws
• Changes to bring about

• Information outputs (eg on screens)
• Electric signals (to machines)

RunModeling

« Epistemic side » « Instrumental side »

Realm of Formal
Methods

Context of use
(« outside »)

Material
Environment
(« inside »)

6

A slippery distinction: descriptive vs. prescriptive

“A model can mirror an existing original (like a
photograph), or it can be used as a specification of
something to be created (like a construction plan).
In the former case, we call it a descriptive model; in
the latter case, we call it prescriptive.” (Ludewig,
2003, p.8)

Examples:
- documentation (descriptive)
- instructions (prescriptive)
- prototypes (descr. then prescr.)
- games (descriptive)
- formal models (descriptive)

Software engineering models (e.g. use cases, flow
or class diagrams, design patterns) are mostly
prescriptive: explain how to build the software « user manual and test data are descriptive models of the

specification; they can replace it for certain purposes»

« The requirements specification is double-sided, because it
describes the user’s needs, and it prescribes the product to be
developed. It is this double role that makes the specification

the most important software component”

7

Three facts requestioning this picture

1. Run-time considerations influence software’s design

2. Design and implementation often mix up when external systems are involved

3. Some programs require a strong change in the users’ behavior; implementation
also happens on the users’ side!

8

Example n°1:
Massively Parallel Computations: The machine invites herself back (1)

Source: Ludwig, 2018 ©

9

Example n°1:
Massively Parallel Computations: The machine invites herself back (2)

Source: Ludwig, 2018 ©

10

Example n°2:
The messy world of EDI (Electronic Data Interchange) (1)

Buyer Seller

11

Example n°2:
The messy world of EDI (Electronic Data Interchange) (2)

• Get specs of information to be exchanged
• Develop translation algorithm & software
• Agree on exchange specifications
• Implement communication channel
• Test

• Missing information in data referential
• Information mappings issues
• Material translation issues (special

caracters, trailing caracters…)
• Compatibility of communication channels
• Volume overload
• Time-outs
• …

An EDI project by the Book… Specification Machine
Configuration

Symbolic
Program

Buyer

Seller

Specification Machine
Configuration

Symbolic
Program

… The Reality
Specification is both ways: our program must
adapt to the external system’s specification,
but may also put constraints to it!

Material considerations heavily influence
specification

Data, exchange and communications specs
and implementation deeply intertwined

12

Interlude: Greenfield vs. Brownfield

13

Example n°3:
ERP process reference models

Illustration: SAP reference map – global view

14

ERPs require strong change management projects on the users’ side

Source: Soh et al, 2000

Purchase orders (PO) and payment
processes are tighly linked in the ERP
referential, while they relied on manual
checks previously.

Integrate and remove
redundant operations
and positions

ERP's patient management module
does not allow the patient to pay
the bill by a fixed amount every
month, tracking the outstanding
amount per installment etc.

Develop add-on
module to ERP patient
management system
to handle billing and
collection.

ERP system has Western name syntax
as first, middle, and last name.
Asian staff have a difficult time
understanding which part of an Indian,
Malay, or Chinese name should be
considered last or first name.

Workaround within
the ERP: enter Asian
name as Last name
field, continue in
First name field if
name is greater than
30 characters.

15

Michael Jackson’s Problem and Machine Domains

Problem’s
Domain

Machine’s
Domain

Shared
phenomena

Customer’s
requirements

“[People] assumed implicitly that the phrase
“software engineering” was to be narrowly
interpreted, […] that it was primarily concerned
with the processes of software design,
programming and testing, and with program
execution.
The alternative broader interpretation of the
phrase, to mean the engineering of change in the
world by devising and installing software-
intensive systems, was not seriously
considered. » (Jackson 2005, 903)

“Because problems are located in the world,
problem analysis must be concerned with the
world and its phenomena. We need a
phenomenology that has nothing to do with
programming languages or object interaction, but
everything to do with the physical world. […]

It is useful to distinguish […] causal, lexical and
biddable domains. All are physical domains, but
demand different kinds of description and raise
different development concerns […] (Jackson 2001)

16

Biddable users?

“If positive behaviour is required of a system
operator or user , [she] is bidden, or enjoined, to
follow the instructions.[…].

The extent to which correct behaviour, in this
sense, can be relied on varies over a wide
spectrum. The pilot of a plane or the driver of a
train can be relied on to behave correctly almost
always. […]

By contrast, the user of an ATM can not be
expected to adhere to an instruction manual.
The appropriate domain properties description
must accommodate every behaviour that is
physically possible.» (Jackson 2001)

17

The messiness of requirements

1) Objectives [such as] "to reduce by 20% waiting time at the counter" [...] are expressed, in the majority of cases,
by the client. The verb implied is the verb want [...]: we (the company) want to decrease the waiting time [...]

2) the use cases or scenarios correspond to the needs of users and [...], for example "register a new customer". The
implied phrase is need, expressed in the first person: "I need to register any new client. "

3) The rules are regulatory requirements or business rules (also called business rules). The verb implied or explicit
is required [...] For example: "A withdrawal of cash can only be made if the account is positive. »[...]

4) Functional requirements are the heart and often the most important part of a specification. They express a
required behavior on the part of the system. They derive from the previous categories. For example: "If cash
withdrawal is not allowed, the system sends a message to the customer. "

5) Quality requirements, also called non-functional requirements, although they are only part of them. They
express themselves in the form of an adjective (fast, easy ...)

6) Interface requirements that express the need for communication between the system under study and the
outside world: hardware, software and people.

7) Technical constraints, such as the use of a particular system or language, or specific technologies, such as a
communication or security protocol.

8) Data formats requirements such as postcode, country code, etc.

9) Other information or requirements, e.g. legacy system description, constraints on delays, costs, etc.

(Constantinidis 2015, p.108)

18

The doom loop of requirements

“Representations (descriptions, determinations of many kinds) of 'what the machine is' take their sense from
descriptions of 'the machine's context'; at the same time, an understanding of ’the context' derives from a
sense of the machine in its context. The sense of context and machine mutually elaborate each other.

For that aspect of context called the user, the reflexive tie is especially marked. The capacity and boundedness
of the machine take their sense and meaning from the capacity and boundedness of the user.” (Woolgar 1991)

19

Program
As Artifacts

Proposed Amendments to the classical view

« Customer’s
Needs »

« Computational
Process »

Specification Machine
Configuration

Symbolic
Program

Realm of Formal
Methods

Context of use
(« outside »)

Material
Environment
(« inside »)

Continuous landscape
No solution of continuity

20

Context
Specification

(both program
and context)

• Alphabets
• Rules
• States
• …

Design as
modeling

Implementation
as operations

Program

• People
• Machines
• Things

A revised picture

Design
as development

Implementation
as logical

configuration

21

Conclusion and open questions

Programming involves two fundamental acts prior to « design » and « implementation »:

1. Defining the scope of your problem – or its context
• It is well known that any plan takes meaning only in a given context, but programming is a kind of

planification which aims to explicit its context as fully as possible
• It includes all resources and goals – humans and machines

2. Defining the limit between the formal and the informal inside the context – which is the specification
• You need to « program » both realms, but in different guises:
• The formal realm is what the programmer takes full responsiblity of, where he is ready to offer a

guarantee of realization of the specification
• The informal realm is what the programmer assumes the behavior of, where he can only offer

descriptions of expected behaviors (whether human, machine or thing)

Design and implementation have two sides because of these two realms

These points seem to suggest a broader epistemic capability, close to « problem-solving » or
« instrumental rationality » as a basic human attitude to the world

